Abstract
Aluminum matrix composites (AMCs) reinforced by 1.5 and 3 wt% FeCoCrNi high-entropy alloy particles (HEAp) were obtained by a stir casting process. The AMCs strip was further prepared by room temperature rolling (RTR, 298 K) and cryorolling (CR, 77 K). The mechanical properties of the AMCs produced by RTR and CR were studied. The effect of a microstructure on mechanical properties of composites was analyzed by scanning electron microscopy (SEM). The results show that CR can greatly improve the mechanical properties of the HEAp/AMCs. Under 30% rolling reduction, the ultimate tensile strength (UTS) of the RTR 1.5 wt% HEAp/AMCs was 120.3 MPa, but it increased to 139.7 MPa in CR composites. Due to the volume shrinkage effect, the bonding ability of CR HEAp/AMCs reinforcement with Al matrix was stronger, exhibiting higher mechanical properties.
Funder
National Key Research and Development Program
High-tech Industry Technology Innovation Leading Plan of Hunan Province
Subject
General Materials Science,Metals and Alloys
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献