Location-Based Lattice Mobility Model for Wireless Sensor Networks

Author:

Al-Rahayfeh Amer,Razaque AbdulORCID,Jararweh Yaser,Almiani Muder

Abstract

Significant research has been conducted for maintaining a high standard of communication and good coverage in wireless sensor networks (WSNs), but extra power consumption and mobility issues are not yet fully resolved. This paper introduces a memory-less location mobility-aware Lattice Mobility Model (LMM) for WSNs. LMM is capable of concurrently determining the node and sink mobility. LMM has a lower pause time, fewer control packets, and less node dependency (e.g., the energy consumed by each node in each cycle that is independent of the data traffic). LMM accurately determines a node’s moving location, the distance from its previous location to its current location, and the distance from its existing location to its destination. Many existing mobility models only provide a model how nodes move (e.g., to mimic pedestrian behavior), but do not actually control the next position based on properties of the underlying network topology. To determine the strength of LMM, OMNet++ was used to generate the realistic scenario to safeguard the affected area. The operation in affected area comprises searching for, detecting, and saving survivors. Currently, this process involves a time-consuming, manual search of the disaster area. This contribution aims to identify an energy efficient mobility model for a walking pattern in this particular scenario. LMM outperforms other mobility models, including the geographic-based circular mobility model (CMM), the random waypoint mobility model (RWMM) and the wind mobility model (WMM), The simulation results also demonstrate that the LMM requires the least time to change the location, has a lower drop rate, and has more residual energy savings than do the WMM, RWMM, and CMM.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3