Tackling Faults in the Industry 4.0 Era—A Survey of Machine-Learning Solutions and Key Aspects

Author:

Angelopoulos Angelos,Michailidis Emmanouel T.ORCID,Nomikos NikolaosORCID,Trakadas PanagiotisORCID,Hatziefremidis AntonisORCID,Voliotis Stamatis,Zahariadis Theodore

Abstract

The recent advancements in the fields of artificial intelligence (AI) and machine learning (ML) have affected several research fields, leading to improvements that could not have been possible with conventional optimization techniques. Among the sectors where AI/ML enables a plethora of opportunities, industrial manufacturing can expect significant gains from the increased process automation. At the same time, the introduction of the Industrial Internet of Things (IIoT), providing improved wireless connectivity for real-time manufacturing data collection and processing, has resulted in the culmination of the fourth industrial revolution, also known as Industry 4.0. In this survey, we focus on the vital processes of fault detection, prediction and prevention in Industry 4.0 and present recent developments in ML-based solutions. We start by examining various proposed cloud/fog/edge architectures, highlighting their importance for acquiring manufacturing data in order to train the ML algorithms. In addition, as faults might also occur from sources beyond machine degradation, the potential of ML in safeguarding cyber-security is thoroughly discussed. Moreover, a major concern in the Industry 4.0 ecosystem is the role of human operators and workers. Towards this end, a detailed overview of ML-based human–machine interaction techniques is provided, allowing humans to be in-the-loop of the manufacturing processes in a symbiotic manner with minimal errors. Finally, open issues in these relevant fields are given, stimulating further research.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 205 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3