How Multi-Criterion Optimized Control Methods Improve Effectiveness of Multi-Zone Building Heating System Upgrading

Author:

Esmaeilzadeh Ahmad,Deal BrianORCID,Yousefi-Koma Aghil,Zakerzadeh Mohammad RezaORCID

Abstract

This paper aims to develop multi-objective optimized control methods to improve the performance of retrofitting building heating systems in reducing consumed energy as well as providing comfortable temperature in a multi-zone building. While researchers evaluate various controllers in specific systems, providing a comprehensive controller for retrofitting the existing heating systems of multi-zone buildings is less investigated. A case study approach with a four-story residential building is simulated. The building energy consumption is modeled by EnergyPlus. The model is validated with energy data. Then, the building steam system model is upgraded, and in the other case, renewed by a hydronic system instead of a steam one. Three optimized controller groups are developed, including Model Predictive Controller (MPC), fuzzy controllers (Fuzzy Logic Controller (FLC) and an Optimized Fuzzy Sliding Mode Controller (OFSMC)), and optimized traditional ones. These controllers were applied to the upgraded steam and hydronic heating systems. The control methods affected the tuning of the boiler feed flow by regulating the condensing cycle and circulating the pump flow of the hydronic system. Accordingly, renewing the heating system improves energy efficiency by up to 29% by implementing a hydronic system instead of the steam one. The fuzzy controllers increased renewing effectiveness by providing comfortable temperatures and reducing building environmental footprints by up to 95% and 12%, respectively, compared with an on/off controller baseline.

Funder

Iran National Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference53 articles.

1. Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review;Renew. Sustain. Energy,2016

2. Multi-objective energy and daylight optimization of amorphous shading devices in buildings;Sol. Energy Sol. Energy,2019

3. Theory and applications of HVAC control systems—A review of model predictive control (MPC);Build. Environ.,2014

4. Performance analysis of space heating smart control models for energy and control effectiveness in five different climate zones;Build. Environ.,2017

5. Multi-objective optimization of a building integrated energy system and assessing the effectiveness of supportive energy policies in Iran;Sustain. Energy Technol. Assess.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3