Miniaturized Near-Infrared (MicroNIR) Spectrometer in Plastic Waste Sorting

Author:

Rani Monika,Marchesi Claudio,Federici StefaniaORCID,Rovelli Gianluca,Alessandri IvanoORCID,Vassalini Irene,Ducoli Serena,Borgese Laura,Zacco Annalisa,Bilo Fabjola,Bontempi ElzaORCID,Depero Laura E.

Abstract

Valorisation of the urban plastic waste in high-quality recyclates is an imperative challenge in the new paradigm of the circular economy. In this scenario, a key role in the improvement of the recycling process is exerted by the optimization of waste sorting. In spite of the enormous developments achieved in the field of automated sorting systems, the quest for the reduction of cross-contamination of incompatible polymers as well as a rapid and punctual sorting of the unmatched polymers has not been sufficiently developed. In this paper, we demonstrate that a miniaturized handheld near-infrared (NIR) spectrometer can be used to successfully fingerprint and classify different plastic polymers. The investigated urban plastic waste comprised polyethylene (PE), polypropylene (PP), poly(vinyl chloride) (PVC), poly(ethylene terephthalate) (PET), and poly(styrene) (PS), collected directly in a recycling plastic waste plant, without any kind of sample washing or treatment. The application of unsupervised and supervised chemometric tools such as principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) on the NIR dataset resulted in a complete classification of the polymer classes. In addition, several kinds of PET (clear, blue, coloured, opaque, and boxes) were correctly classified as PET class, and PE samples with different branching degrees were properly separated.

Publisher

MDPI AG

Subject

General Materials Science

Reference35 articles.

1. Plastics Europehttp://www.plasticseurope.org

2. Recycling and recovery routes of plastic solid waste (PSW): A review

3. Use of recycled plastic in concrete: A review

4. A review on automated sorting of source-separated municipal solid waste for recycling

5. Identification and classification of plastic resins using near infrared reflectance spectroscopy;Masoumi;Int. J. Mech. Mechatron. Eng.,2012

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3