Model-Based Estimates for Farm Labor Quantities

Author:

Chen LuORCID,Cruze Nathan B.,Young Linda J.

Abstract

The United States Department of Agriculture’s (USDA’s) National Agricultural Statistics Service (NASS) conducts the Farm Labor Survey to produce estimates of the number of workers, duration of the workweek, and wage rates for all agricultural workers. Traditionally, expert opinion is used to integrate auxiliary information, such as the previous year’s estimates, with the survey’s direct estimates. Alternatively, implementing small area models for integrating survey estimates with additional sources of information provides more reliable official estimates and valid measures of uncertainty for each type of estimate. In this paper, several hierarchical Bayesian subarea-level models are developed in support of different estimates of interest in the Farm Labor Survey. A 2020 case study illustrates the improvement of the direct survey estimates for areas with small sample sizes by using auxiliary information and borrowing information across areas and subareas. The resulting framework provides a complete set of coherent estimates for all required geographic levels. These methods were incorporated into the official Farm Labor publication for the first time in 2020.

Publisher

MDPI AG

Subject

General Computer Science

Reference21 articles.

1. Farm Laborhttps://downloads.usda.library.cornell.edu/usda-esmis/files/x920fw89s/n583zg017/dn39xm85z/fmla0520.pdf

2. Farm Laborhttps://downloads.usda.library.cornell.edu/usda-esmis/files/x920fw89s/f7624565c/9k420769j/fmla0221.pdf

3. Farm Labor Methodology and Quality Measures;USDA NASS,2021

4. Small Area Estimation

5. New Important Developments in Small Area Estimation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3