Effects of Starvation and Refeeding on Growth, Digestion, Nonspecific Immunity and Lipid-Metabolism-Related Genes in Onychostoma macrolepis

Author:

Gou Nina1,Wang Kaifeng1,Jin Tiezhi1,Yang Bin1

Affiliation:

1. Shaanxi Institute of Zoology, Xi’an 710032, China

Abstract

The present research was conducted to assess the influences of starvation and refeeding on growth, nonspecific immunity and lipid metabolic adaptation in Onychostoma macrolepis. To date, there have been no similar reports in O. macrolepis. The fish were randomly assigned into two groups: control group (continuous feeding for six weeks) and starved–refed group (starvation for three weeks and then refeeding for three weeks). After three weeks of starvation, the results showed that the body weight (BW, 1.44 g), condition factor (CF, 1.17%), visceral index (VSI, 3.96%), hepatopancreas index (HSI, 0.93%) and intraperitoneal fat index (IPFI, 0.70%) of fish were significantly lower compared to the control group (BW, 5.72 g; CF, 1.85%; VSI, 6.35%; HSI, 2.04%; IPFI, 1.92%) (p < 0.05). After starvation, the serum triglyceride (TG, 0.83 mmol/L), total cholesterol (T-GHOL, 1.15 mmol/L), high-density lipoprotein (HDL, 1.13 mmol/L) and low-density lipoprotein (LDL, 0.46 mmol/L) concentrations were significantly lower than those in the control group (TG, 1.69 mmol/L; T-GHOL, 1.86 mmol/L; HDL, 1.62 mmol/L; LDL, 0.63 mmol/L) (p < 0.05). The activities of intestinal digestive enzymes (amylase, lipase and protease) in the starved-refed group were significantly lower than those in the control group after three weeks of starvation (p < 0.05). The highest activities of immune enzymes such as lysozyme (LZM), acid phosphate (ACP), alkaline phosphate (ALP), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and catalase (CAT) in the hepatopancreas were presented in the starved–refed group at second week, and significantly higher than those in the control group (p < 0.05). Meanwhile, starvation significantly improved intestinal immune enzymes activities (p < 0.05). the lowest TG contents and the highest expression levels of lipolysis genes including hormone-sensitive lipase (HSL) and carnitine palmitoyl transferase 1 isoform A (CPT-1A) appeared in the hepatopancreas, muscle and intraperitoneal fat after starvation, indicating the mobilization of fat reserves in these tissues (p < 0.05). After refeeding, the recovery of TG content might be mediated by the upregulation of the expression levels of lipogenesis genes such as sterol regulatory element binding protein 1 (SREBP1) and fatty acid synthase (FAS). Understanding the duration of physiological and metabolic changes in O. macrolepis and their reversibility or irreversibility to supplementary feeding response could provide valuable reference for the adaptability of O. macrolepis in large-scale culturing, proliferation and release.

Funder

Key Research and Development project of Shaanxi

Science and Technology Program of Shaanxi Academy of Sciences

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3