Experimental Investigations of a Single-Slope Solar Still: Energy and Exergy Analysis

Author:

Ali Haider1ORCID,Ali Sajid2ORCID,Khan Sikandar3ORCID,Siddiqui Muhammad Umar4

Affiliation:

1. Department of Mechanical Engineering, Nadirshaw Eduljee Dinshaw (NED) University of Engineering & Technology, Karachi 75270, Pakistan

2. Mechanical and Energy Engineering Department, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia

3. Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

4. Department of Mechatronic Engineering, SZABIST University, 100 Clifton Block 5, Karachi Campus, Karachi 75270, Pakistan

Abstract

Fresh water is one of the prime necessities of a society; however, its availability is becoming a major concern with the increasing population. There are not enough sources of fresh water at present due to the high rate of population increase. Many regions worldwide face limited access to fresh water. Given economic limitations, there is an urgent need to create and market technologies enabling households to generate their fresh water. In areas with abundant solar energy and proximity to seawater or well-water sources, solar still technology, if developed and commercialized, offers a cost-effective solution for freshwater needs. Thus, the current study is focused on exploring the potential of solar stills for producing fresh water. A single-slope solar still is designed, fabricated and experimentally tested for the production of fresh water. The results of the analysis indicate a maximum production of 2.88 L/day with an energy efficiency of 52.42% and an exergetic efficiency of 7.04%. Overall, the current study reveals significant potential in utilizing solar stills for producing fresh water, which could be increased further if research is conducted on modifying its basic design to increase its productivity.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3