Practical Dead-Time Control Methodology of a Three-Phase Dual Active Bridge Converter for a DC Grid System

Author:

Choi Hyun-Jun1ORCID,Ahn Jung-Hoon1ORCID,Jung Jee-Hoon2ORCID,Song Sung-Geun1

Affiliation:

1. Korea Electronics Technology Institute (KETI), Seongnam 13509, Republic of Korea

2. Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

Abstract

An effective dead-time control strategy for the three-phase dual active bridge (3P-DAB) converter of a distribution system is studied to reduce the switching losses of power switches and improve the under-light-load power conversion efficiency. Because of the advantages of a dual-active bridge converter, such as an inherent zero-voltage switching (ZVS) capability without any additional resonant tank and a seamless bi-directional power transition, this is an attractive topology for bi-directional application. The 3P-DAB converter is apt for high-power applications such as aircraft due to an interleaved structure, which can reduce conduction losses. However, the design of the dead time depends on engineering experience and empirical methods. In order to overcome the conventional practicality of the dead-time design method, the effective control of dead time is proposed based on the theoretical analysis. In this paper, the overall explanation of the 3P-DAB converter is shown with operation principles. In addition, the dead-time effect of the 3P-DAB converter is examined and the practical variable dead-time control strategy is studied. Finally, experimental results validate the proposed variable dead-time control strategy using a 25 kW prototype 3P-DAB converter.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3