Abstract
Microcontrollers have a low energy consumption and are convenient tools for the operation and readout of small lab-on-a-chip devices. The operation of microcontrollers for data collection and analysis is key for measurements and statistics in field experiments. However, for portable lab-on-a-chip or point-of-care systems in low-resource settings, the availability of energy sources is a bottleneck. Here, we present a simple, nontoxic aluminum/air redox battery with a 3D-printed housing for on-demand operation of a sensor using a microcontroller for data collection. The battery is stored in a dry state and can be manufactured conveniently using off-the-shelf components and a simple 3D printer. It can be quickly assembled and operates a microcontroller for at least one hour in continuous operation mode. We demonstrate its performance by collecting data from a capacitive sensor capable of determining the conductivity of liquid samples. Such sensors can be used for, e.g., determining the water quality or phase formation in liquid mixtures. The sensor performance in determining different conductivities of nonconductive and conductive liquids in droplets is demonstrated.
Funder
Deutsche Forschungsgemeinschaft
European Research Council
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献