Abstract
This paper presents a single-copter localization system as a first step towards a scalable multihop drone swarm localization system. The drone was equipped with ultrawideband (UWB) transceiver modules, which can be used for communication, as well as distance measurement. The location of the drone was detected based on fixed anchor points using a single type of UWB transceiver. Our aim is to create a swarm localization system that enables drones to switch their role between an active swarm member and an anchor node to enhance the localization of the whole swarm. To this end, this paper presents our current baseline localization system and its performance regarding single-drone localization with fixed anchors and its integration into our current modular quadcopters, which was designed to be easily extendable to a swarm localization system. The distance between each drone and the anchors was measured periodically, and a specially tailored gradient descent algorithm was used to solve the resulting nonlinear optimization problem. Additional copter and wireless-specific adaptations were performed to enhance the robustness. The system was tested with a Vicon system as a position reference and showed a high precision of 0.2 m with an update rate of <10 Hz. Additionally, the system was integrated into the FINken copters of the SwarmLab and evaluated in multiple outdoor scenarios. These scenarios showed the generic usability of the approach, even though no accurate precision measurement was possible.
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献