Incorporating Geographical Scale and Multiple Environmental Factors to Delineate the Breeding Distribution of Sea Turtles

Author:

Dickson Liam C.ORCID,Katselidis Kostas A.ORCID,Eizaguirre Christophe,Schofield GailORCID

Abstract

Temperature is often used to infer how climate influences wildlife distributions; yet, other parameters also contribute, separately and combined, with effects varying across geographical scales. Here, we used an unoccupied aircraft system to explore how environmental parameters affect the regional distribution of the terrestrial and marine breeding habitats of threatened loggerhead sea turtles (Caretta caretta). Surveys spanned four years and ~620 km coastline of western Greece, encompassing low (<10 nests/km) to high (100–500 nests/km) density nesting areas. We recorded 2395 tracks left by turtles on beaches and 1928 turtles occupying waters adjacent to these beaches. Variation in beach track and inwater turtle densities was explained by temperature, offshore prevailing wind, and physical marine and terrestrial factors combined. The highest beach-track densities (400 tracks/km) occurred on beaches with steep slopes and higher sand temperatures, sheltered from prevailing offshore winds. The highest inwater turtle densities (270 turtles/km) occurred over submerged sandbanks, with warmer sea temperatures associated with offshore wind. Most turtles (90%) occurred over nearshore submerged sandbanks within 10 km of beaches supporting the highest track densities, showing the strong linkage between optimal marine and terrestrial environments for breeding. Our findings demonstrate the utility of UASs in surveying marine megafauna and environmental data at large scales and the importance of integrating multiple factors in climate change models to predict species distributions.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3