Effect of Ducted Multi-Propeller Configuration on Aerodynamic Performance in Quadrotor Drone
Author:
Li Yi,Yonezawa Koichi,Liu Hao
Abstract
Motivated by a bioinspired optimal aerodynamic design of a multi-propeller configuration, here we propose a ducted multi-propeller design to explore the improvement of lift force production and FM efficiency in quadrotor drones through optimizing the ducted multi-propeller configuration. We first conducted a CFD-based study to explore a high-performance duct morphology in a ducted single-propeller model in terms of aerodynamic performance and duct volume. The effect of a ducted multi-propeller configuration on aerodynamic performance is then investigated in terms of the tip distance and the height difference of propellers under a hovering state. Our results indicate that the tip distance-induced interactions have a noticeable effect in impairing the lift force production and FM efficiency but are limited to small tip distances, whereas the height difference-induced interactions have an impact on enhancing the aerodynamic performance over a certain range. An optimal ducted multi-propeller configuration with a minimal tip distance and an appropriate height difference was further examined through a combination of CFD simulations and a surrogate model in a broad-parameter space, which enables a significant improvement in both lift force production and FM efficiency for the multirotor, and thus provides a potential optimal design for ducted multirotor UAVs.
Funder
Japan Society for the Promotion of Science
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Reference38 articles.
1. Lift Failure Detection and Management System for Quadrotors;Roldan,2014
2. Parametric design and optimization of multi-rotor aerial vehicles;Ampatis;Proc.-IEEE Int. Conf. Robot Autom.,2014
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献