A Physically Based Model for the Streaming Potential Coupling Coefficient in Partially Saturated Porous Media

Author:

Duy Thanh Luong DuyORCID,Jougnot DamienORCID,Do Phan Van,Ca Nguyen XuanORCID,Hien Nguyen ThiORCID

Abstract

The electrokinetics methods have great potential to characterize hydrogeological processes in porous media, especially in complex partially saturated hydrosystems (e.g., the vadose zone). The dependence of the streaming coupling coefficient on water saturation remains highly debated in both theoretical and experimental works. In this work, we propose a physically based model for the streaming potential coupling coefficient in porous media during the flow of water and air under partially saturated conditions. The proposed model is linked to fluid electrical conductivity, water saturation, irreducible water saturation, and microstructural parameters of porous materials. In particular, the surface conductivity of porous media has been taken into account in the model. In addition, we also obtain an expression for the characteristic length scale at full saturation in this work. The proposed model is successfully validated using experimental data from literature. A relationship between the streaming potential coupling coefficient and the effective excess charge density is also obtained in this work and the result is the same as those proposed in literature using different approaches. The model proposes a simple and efficient way to model the streaming potential generation for partially saturated porous media and can be useful for hydrogeophysical studies in the critical zone.

Funder

National Foundation for Science and Technology Development

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference105 articles.

1. Hydrogeophysics;Rubin,2006

2. Hydrogeophysics;Hubbard,2011

3. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales

4. The Self-Potential Method: Theory and Applications in Environmental Geosciences;Revil,2013

5. Detection of fluid flow variations at the Nankai Trough by electric and magnetic measurements in boreholes or at the seafloor

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3