Influence of Three Laser Wavelengths with Different Power Densities on the Mitochondrial Activity of Human Gingival Fibroblasts in Cell Culture

Author:

Nowak-Terpiłowska Agnieszka1ORCID,Zeyland Joanna1ORCID,Hryhorowicz Magdalena1,Śledziński Paweł2ORCID,Wyganowska Marzena3

Affiliation:

1. Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, 60-632 Poznan, Poland

2. Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Science, 61-704 Poznań, Poland

3. Department of Dental Surgery, Periodontology and Oral Mucosa Diseases, Poznan University of Medical Sciences, 60-812 Poznan, Poland

Abstract

Phototherapy plays a key role in wound healing and tissue regeneration. The use of lasers has the potential to become an effective and minimally invasive treatment in periodontal and peri-implant disease. The aim of this study was to evaluate the influence of three laser wavelengths with the combination of parameters such as power density and energy density on human gingival fibroblasts (hGFs) in vitro culture. Isolated cells were seeded in 96-well plates with culture medium (DMEM, Dulbecco’s modified Eagle’s medium) supplemented with 10% fetal bovine serum (FBS). After 24 h cells were irradiated (1064, 980 and 635 nm, various energy density value). After 24, 48 and 72 h, cells were evaluated for viability. Data were analyzed by ANOVA followed by Tukey’s HSD test. We found the best outcomes for hGFs irradiated with laser 1064 nm for all combinations of power output (50/400/1000 mW) and energy dose (3/25/64 J/cm2) after 48 h and 72 h compared with control group. Cell viability increase ranged from 0.6× (3 J/cm2, 50 mW) to 1.3× (64 J/cm2, 1000 mW). Our findings indicate that the appropriate use of low-level laser irradiation (LLLI) can increase the proliferation rate of cultured cells. The use of LLLI can be extremely useful in tissue engineering and regenerative medicine.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3