CFD-DEM Simulation of Backflow Blockage of Deep-Sea Multistage Pump

Author:

Hu Qiong,Chen Jun,Deng Liwen,Kang Yajuan,Liu Shaojun

Abstract

The multistage centrifugal pump is the critical component of mineral resources lifting in deep-sea mining. The reflux of nodules in the lifting pipe caused by the emergency pump stop can easily cause the pump to clog. In this paper, coupled Computational Fluid Dynamics and Discrete Element Method (CFD-DEM co-simulations) are used to clarify the solid-liquid two-phase flow in two-stage centrifugal pumps under different particle sizes (10–20, 20–30, 30–40, 40–50 mm) with constant particle concentration. The movement and accumulation behaviour of particles in different flow fields (pipeline to pump, the first to the second pump stage) is investigated. Meanwhile, the effect of particle size and particle reflux velocity on the blockage of the flow channel in the pump was investigated. Particle accumulation in the pump was observed to determine the key factors affecting the pump’s reflux capacity. The residual mass of particles in the pump at different particle sizes was counted. Simultaneously, the percentage of residual mass of 10–20 mm particles in the pump was compared between the experiment and the simulation with an acceptable tolerance of within 10%. In addition, pressure changes in the blockage-prone section were also investigated. A comparison between experiments and simulations verifies the consistency of the trend on the pump inlet pressure when clogged with 50 mm particles. It was found that larger particles in the range of 10–30 mm can better ensure the pump’s reflux performance.

Funder

National Key Research and Development Program of China

Open-end Fund of State Key Laboratory of Deep-sea Mineral Resources Development and Utili-zation Technology

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference26 articles.

1. Experimental and Numerical Investigation on the Transport Characteristics of Particle-Fluid Mixture in Y-Shaped Elbow

2. An Integrated Dynamic Model and Optimized Fuzzy Controller for Path Tracking of Deep-Sea Mining Vehicle

3. Numerical simulation analysis of deep-sea mining lift pump;Zou;J. Hunan Univ. (Nat. Sci. Ed.),2013

4. Research on deep-sea mining high head coarse particles multistage transfer electric pump;Yang;J. Cent. South Univ. (Nat. Sci. Ed.),2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3