Colpodella sp. (ATCC 50594) Life Cycle: Myzocytosis and Possible Links to the Origin of Intracellular Parasitism

Author:

Getty Troy A.,Peterson John W.,Fujioka Hisashi,Walsh Aidan M.,Sam-Yellowe Tobili Y.

Abstract

Colpodella species are free living bi-flagellated protists that prey on algae and bodonids in a process known as myzocytosis. Colpodella species are phylogenetically related to Apicomplexa. We investigated the life cycle of Colpodella sp. (ATCC 50594) to understand the timing, duration and the transition stages of Colpodella sp. (ATCC 50594). Sam-Yellowe’s trichrome stains for light microscopy, confocal and differential interference contrast (DIC) microscopy was performed to identify cell morphology and determine cross reactivity of Plasmodium species and Toxoplasma gondii specific antibodies against Colpodella sp. (ATCC 50594) proteins. The ultrastructure of Colpodella sp. (ATCC 50594) was investigated by transmission electron microscopy (TEM). The duration of Colpodella sp. (ATCC 50594) life cycle is thirty-six hours. Colpodella sp. (ATCC 50594) were most active between 20–28 h. Myzocytosis is initiated by attachment of the Colpodella sp. (ATCC 50594) pseudo-conoid to the cell surface of Parabodo caudatus, followed by an expansion of microtubules at the attachment site and aspiration of the prey’s cytoplasmic contents. A pre-cyst formed at the conclusion of feeding differentiates into a transient or resting cyst. Both DIC and TEM microscopy identified asynchronous and asymmetric mitosis in Colpodella sp. (ATCC 50594) cysts. Knowledge of the life cycle and stages of Colpodella sp. (ATCC 50594) will provide insights into the development of intracellular parasitism among the apicomplexa.

Publisher

MDPI AG

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health,General Immunology and Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3