Dengue Meteorological Determinants during Epidemic and Non-Epidemic Periods in Taiwan

Author:

You Shu-Han,Chen Szu-ChiehORCID,Huang Yi-Han,Tsai Hsin-Chieh

Abstract

The identification of the key factors influencing dengue occurrence is critical for a successful response to the outbreak. It was interesting to consider possible differences in meteorological factors affecting dengue incidence during epidemic and non-epidemic periods. In this study, the overall correlation between weekly dengue incidence rates and meteorological variables were conducted in southern Taiwan (Tainan and Kaohsiung cities) from 2007 to 2017. The lagged-time Poisson regression analysis based on generalized estimating equation (GEE) was also performed. This study found that the best-fitting Poisson models with the smallest QICu values to characterize the relationships between dengue fever cases and meteorological factors in Tainan (QICu = −8.49 × 10−3) and Kaohsiung (−3116.30) for epidemic periods, respectively. During dengue epidemics, the maximum temperature with 2-month lag (β = 0.8400, p < 0.001) and minimum temperature with 5-month lag (0.3832, p < 0.001). During non-epidemic periods, the minimum temperature with 3-month lag (0.1737, p < 0.001) and mean temperature with 2-month lag (2.6743, p < 0.001) had a positive effect on dengue incidence in Tainan and Kaohsiung, respectively.

Funder

Ministry of Science and Technology

Chung Shan Medical University

Publisher

MDPI AG

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health,General Immunology and Microbiology

Reference47 articles.

1. The global distribution and burden of dengue;Bhatt;Nature,2013

2. The global burden of dengue: An analysis from the Global Burden of Disease Study 2013;Stanaway;Lancet Infect. Dis.,2016

3. World Health Organization (WHO) (2022). Dengue and Severe Dengue, World Health Organization (WHO). Available online: https://www.who.int/health-topics/dengue-and-severe-dengue#tab=tab_1.

4. Effects of ambient temperature and precipitation on the risk of dengue fever: A systematic review and updated meta-analysis;Li;Environ. Res.,2020

5. Different responses of dengue to weather variability across climate zones in Queensland, Australia;Akter;Environ. Res.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3