Evaluation Method of Relative Humidity Changes in Below-Grade Concrete Structure Space Depending on Different Waterproofing Material and Installation Method

Author:

An Ki-won,Oh Kyu-hwan,Jiang Bo,He Xingyang,Oh Sang-keunORCID

Abstract

An evaluation method for assessing the difference in the relative humidity (RH) control performance of waterproofing material is proposed. For a demonstration of this evaluation method, two waterproofing materials (urethane coating and cementitious waterproofing material) installed with different methods (positive and negative side of concrete structure respectively) are exposed to temperature conditions representing three seasonal conditions: Summer (40 °C), spring/autumn (20 °C) and winter (4 °C). Condensation level changes on the inner side of the waterproofing material installed specimen is measured, and for derive criteria for comparison, three parameters based on the average RH, intercept RH (derived from a linear regression analysis of RH measurement), and maximum relative humidity are derived for each different waterproofing material installed specimen. Based on quality specification for underground concrete structures, the demonstration evaluation establishes provisional standard criteria of below 70% RH, and all three parameters are evaluated to determine whether the tested waterproofing material/method complies to the performance requirement. Additional analysis through linear regression and cumulative probability density graphs are derived to evaluate the RH consistency and range parameters. The evaluation regime demonstrates a quantitative RH analysis method and apparatus, and a newly designed evaluation criteria is used to compare the RH control performance of positive-side installed urethane waterproofing materials and negative-side installed cementitious waterproofing material.

Publisher

MDPI AG

Subject

General Materials Science

Reference32 articles.

1. Humidity Change Rate Analysis for Various Waterproofing Method in Underground Structures During Winter Season;An;J. Korea Inst. Struct. Maint. Insp.,2016

2. Characteristics of Humidity-Temperature Changing in the Below-Grade Concrete Structure by Applying Waterproofing Materials on the Exterior Wall

3. Effects of climate and corrosion on concrete behaviour

4. Moisture Control Guidance for Building Design, Construction and Maintenance, Printable Version,2014

5. Influence of Freeze-Thaw Damage on the Steel Corrosion and Bond-Slip Behavior in the Reinforced Concrete

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3