K-L Estimator: Dealing with Multicollinearity in the Logistic Regression Model

Author:

Lukman Adewale F.ORCID,Kibria B. M. GolamORCID,Nziku Cosmas K.ORCID,Amin MuhammadORCID,Adewuyi Emmanuel T.ORCID,Farghali Rasha

Abstract

Multicollinearity negatively affects the efficiency of the maximum likelihood estimator (MLE) in both the linear and generalized linear models. The Kibria and Lukman estimator (KLE) was developed as an alternative to the MLE to handle multicollinearity for the linear regression model. In this study, we proposed the Logistic Kibria-Lukman estimator (LKLE) to handle multicollinearity for the logistic regression model. We theoretically established the superiority condition of this new estimator over the MLE, the logistic ridge estimator (LRE), the logistic Liu estimator (LLE), the logistic Liu-type estimator (LLTE) and the logistic two-parameter estimator (LTPE) using the mean squared error criteria. The theoretical conditions were validated using a real-life dataset, and the results showed that the conditions were satisfied. Finally, a simulation and the real-life results showed that the new estimator outperformed the other considered estimators. However, the performance of the estimators was contingent on the adopted shrinkage parameter estimators.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference41 articles.

1. Frisch, R. (1934). Statistical Confluence Analysis by Means of Complete Regression Systems, University Institute of Economics.

2. Performance of some logistic ridge regression estimators;Kibria;Comp. Econ.,2012

3. Review and classifications of the ridge parameter estimation techniques;Lukman;Hacet. J. Math. Stat.,2017

4. Ridge regression: Biased estimation for nonorthogonal problems;Hoerl;Technometrics,1970

5. A ridge logistic estimator;Schaeffer;Commun. Stat. Theory Methods,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3