Option Pricing Using LSTM: A Perspective of Realized Skewness

Author:

Liu Yan,Zhang Xiong

Abstract

Deep learning has drawn great attention in the financial field due to its powerful ability in nonlinear fitting, especially in the studies of asset pricing. In this paper, we proposed a long short-term memory option pricing model with realized skewness by fully considering the asymmetry of asset return in emerging markets. It was applied to price the ETF50 options of China. In order to emphasize the improvement of this model, a comparison with a parametric method, such as Black-Scholes (BS), and machine learning methods, such as support vector machine (SVM), random forests and recurrent neural network (RNN), was conducted. Moreover, we also took the characteristic of heavy tail into consideration and studied the effect of realized kurtosis on pricing to prove the robustness of the skewness. The empirical results indicate that realized skewness significantly improves the pricing performance of LSTM among moneyness states except for in-the-money call options. Specifically, the LSTM model with realized skewness outperforms the classical method and other machine learning methods in all metrics.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference49 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3