Abstract
Deep learning has drawn great attention in the financial field due to its powerful ability in nonlinear fitting, especially in the studies of asset pricing. In this paper, we proposed a long short-term memory option pricing model with realized skewness by fully considering the asymmetry of asset return in emerging markets. It was applied to price the ETF50 options of China. In order to emphasize the improvement of this model, a comparison with a parametric method, such as Black-Scholes (BS), and machine learning methods, such as support vector machine (SVM), random forests and recurrent neural network (RNN), was conducted. Moreover, we also took the characteristic of heavy tail into consideration and studied the effect of realized kurtosis on pricing to prove the robustness of the skewness. The empirical results indicate that realized skewness significantly improves the pricing performance of LSTM among moneyness states except for in-the-money call options. Specifically, the LSTM model with realized skewness outperforms the classical method and other machine learning methods in all metrics.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献