Elevational Patterns of Forest Evapotranspiration and Its Sensitivity to Climatic Variation in Dryland Mountains

Author:

Li Hongyu123,Liu Xiaohuang13ORCID,Zhang Wenbo123,Zhu Haoyang4,Zhao Xiaofeng123ORCID,Liu Jiufen123,Luo Xinping135,Wang Ran123,Zhao Honghui13,Wang Chao13

Affiliation:

1. Comprehensive Survey Command Center for Natural Resources, China Geological Survey, Beijing 100055, China

2. School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China

3. Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Ministry of Natural Resources, Beijing 100055, China

4. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

5. Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China

Abstract

Elevational climatic heterogeneity, complex terrains, and varying subsurface properties affect the sensitivity of evapotranspiration (ET) in dryland mountain forests to hydrometeorological changes. However, the elevational distribution of ET sensitivity and its major influencing factors remain poorly understood. This study focused on the mid-altitude zone (1000–3500 m) forests in the Chinese Western Tianshan Mountains and assessed ET sensitivity to multiple climate variables, including precipitation (P) and potential evapotranspiration (PET), from 2000 to 2020. To evaluate the multi-year mean and trends in ET sensitivity, multi-source remote sensing data and regional survey data were analyzed using Spearman’s correlation coefficient, the sliding window method, and Kendall’s test. Furthermore, the relative importance of environmental variables (topography, geology, soil, and vegetation) was investigated. P and PET showed no significant trends, while ET exhibited a significant increasing trend (5.81 mm/yr, p < 0.01), particularly at elevations above 2000 m. Most forests (93.5%) showed a positive sensitivity of ET to P, and 70.0% showed a positive sensitivity of ET to PET, mainly at elevations of 1500–2500 m. Additionally, the trend in ET sensitivity to P decreased with an increasing elevation, with 64.5% showing a positive trend. Meanwhile, the trend in ET sensitivity to PET increased with elevation, with 88.1% showing a positive trend. Notably, 53.2% of the forests showed increasing ET sensitivity trends to both P and PET, primarily at elevations of 2000–3000 m with a mean normalized difference vegetation index (NDVI) of 0.56. Geological factors, particularly the hydrological properties of weathered bedrock, contributed the most (~47%) to mean sensitivity. However, geological and vegetative factors, including the NDVI and root zone water availability, were the main contributors (35% each) to the sensitivity. This study highlights the elevation-dependent sensitivity of dryland mountain forests to hydrothermal changes, with higher-elevation forests (>2000 m) being more sensitive to global warming.

Funder

Science and Technology Innovation Fund of the Comprehensive Survey and Command Center for Natural Resources, China Geological Survey

National Nonprofit Institute Research Grant of IGGE

Third Xinjiang Scientific Expedition Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3