Effects of Climate Change on Streamflow in the Ayazma River Basin in the Marmara Region of Turkey

Author:

Seddiqe Khaja Haroon1ORCID,Sediqi Rahmatullah1,Yildiz Osman2ORCID,Akturk Gaye2ORCID,Kostecki Jakub3ORCID,Gortych Marta3ORCID

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Iki Eylul Campus, Eskisehir Technical University, Tepebasi 26555, Eskisehir, Turkey

2. Department of Civil Engineering, Faculty of Engineering and Architecture, Kirikkale University, Kirikkale 71450, Ankara, Turkey

3. Institute of Environmental Engineering, University of Zielona Gora, 65-516 Zielona Gora, Poland

Abstract

This study investigates the effects of climate change on streamflow in the Ayazma river basin located in the Marmara region of Turkey using a hydrological model. Regional Climate Model (RCM) outputs from CNRM-CM5/RCA4, EC-EARTH/RACMO22E and NorESM1-M/HIRHAM5 with the RCP4.5 and RCP8.5 emission scenarios were utilized to drive the HBV-Light (Hydrologiska Byråns Vattenbalansavdelning) hydrological model. A trend analysis was performed with the Mann–Kendall trend test for precipitation and temperature projections. A meteorological drought assessment was presented using the Standardized Precipitation–Evapotranspiration Index (SPEI) method for the worst-case scenario (i.e., RCP8.5). The calibrated and validated hydrological model was used for streamflow simulations in the basin for the period 2022–2100. The selected climate models were found to produce high precipitation projections with positive anomalies ranging from 22 to 227 mm. The increase in annual mean temperatures reached up to 1.8 °C and 2.6 °C for the RCP4.5 and RCP8.5 scenarios, respectively. The trend results showed statistically insignificant upward and downward trends in precipitation and statistically significant upward trends in temperatures at 5% significance level for both RCP scenarios. It was shown that there is a significant increase in drought intensities and durations for SPEI greater than 6 months after mid- century. Streamflow simulations showed decreasing trends for both RCP scenarios due to upward trend in temperature and, hence, evapotranspiration. Streamflow peaks obtained with the RCP8.5 scenario were generally lower than those obtained with the RCP4.5 scenario. The mean values of the streamflow simulations from the CNRM-CM5/RCA4 and NorESM1-M/HIRHAM5 outputs were approximately 2 to 10% lower than the observation mean. On the other hand, the average value obtained from the EC-EARTH/RACMO 22E outputs was significantly higher than the observation average, up to 32%. The results of this study can be useful for evaluating the impact of climate change on streamflow and developing sustainable climate adaptation options in the Ayazma river basin.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3