Frequency Response of RC Propellers to Streamwise Gusts in Forward Flight

Author:

Cai Jielong1ORCID,Gunasekaran Sidaard1

Affiliation:

1. Mechanical and Aerospace Engineering, University of Dayton, Dayton, OH 45469, USA

Abstract

The RC propeller performance under steady and sinusoidally time-varying freestream (stream-wise or longitudinal gust) was investigated in the University of Dayton Low-Speed Wind Tunnel (UD-LSWT) in the open-jet configuration. The propellers were tested at varying incidence angles and reduced frequencies. The streamwise gust was created by actuating the shuttering system located at the test section exit and was characterized using hot-wire anemometry. A system identification model was developed for the shuttering system to determine the shutter actuation profile that would result in a sinusoidal gust in the test section. Changes in propeller thrust, power, and pitching moment were observed with an increase in propeller incidence angle under the steady freestream. The propeller’s steady freestream performance was then used to predict response under periodic streamwise gusts in edgewise flight. Below a reduced frequency of 0.2, the propeller response agrees with the prediction model, suggesting that the propeller response is quasi-steady. At reduced frequencies higher than 0.2, a reduction in mean thrust and pitching moment and significant phase lag was observed.

Publisher

MDPI AG

Reference29 articles.

1. (2021, November 01). Joby-Aviation. Available online: https://www.jobyaviation.com/.

2. (2021, November 01). Ascendance Flight Technologies ATEA. Available online: https://www.ascendance-ft.com/.

3. Gust encounters of rigid wings: Taming the parameter space;Jones;Phys. Rev. Fluids,2020

4. Airfoil longitudinal gust response in separated vs. attached flows;Granlund;Phys. Fluids,2014

5. Unsteady Low-Speed Wind Tunnels;Greenblatt;AIAA J.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3