Application of GNSS Interferometric Reflectometry for the Estimation of Lake Ice Thickness

Author:

Ghiasi YusofORCID,Duguay Claude R.ORCID,Murfitt JustinORCID,van der Sanden Joost J.,Thompson Aaron,Drouin Hugo,Prévost Christian

Abstract

Lake ice thickness is a sensitive indicator of climate change largely through its dependency on near-surface air temperature and on-ice snow mass (depth and density). Monitoring of the seasonal variations and trends in ice thickness is also important for the operation of winter ice roads that northern communities rely on for the movement of goods as well as for cultural and leisure activities (e.g., snowmobiling). Therefore, consistent measurements of ice thickness over lakes is important; however, field measurements tend to be sparse in both space and time in many northern countries. Here, we present an application of L-band frequency Global Navigation Satellite System (GNSS) Interferometric Reflectometry (GNSS-IR) for the estimation of lake ice thickness. The proof of concept is demonstrated through the analysis of Signal-to-Noise Ratio (SNR) time series extracted from Global Positioning System (GPS) constellation L1 band raw data acquired between 8 and 22 March (2017 and 2019) at 14 lake ice sites located in the Northwest Territories, Canada. Dominant frequencies are extracted using Least Squares Harmonic Estimation (LS-HE) for the retrieval of ice thickness. Estimates compare favorably with in-situ measurements (mean absolute error = 0.05 m, mean bias error = −0.01 m, and root mean square error = 0.07 m). These results point to the potential of GPS/GNSS-IR as a complementary tool to traditional field measurements for obtaining consistent ice thickness estimates at many lake locations, given the relatively low cost of GNSS antennas/receivers.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of River Ice Observation and Data Analysis Technologies;Hydrology;2024-08-20

2. Improving the Estimation of Lake Ice Thickness with High-Resolution Radar Altimetry Data;Remote Sensing;2024-07-09

3. Potential of GNSS-R for the Monitoring of Lake Ice Phenology;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

4. Observations of River Ice Breakup Using GNSS-IR, SAR, and Machine Learning;IEEE Transactions on Geoscience and Remote Sensing;2024

5. GNSS and the cryosphere;GNSS Monitoring of the Terrestrial Environment;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3