Characterization of GLOD4 in Leydig Cells of Tibetan Sheep During Different Stages of Maturity

Author:

Wang ,Li ,Liu ,Zhang ,Zhao ,Ma

Abstract

We have previously reported that glyoxalase domain-containing protein 4 (GLOD4) is expressed in sheep testes by proteome analysis, but its roles during testicular development remain unclear. The aim of this study was to understand the expression characteristics and biological functions of the GLOD4 gene in developmental Tibetan sheep testes. The cDNA sequence of the Tibetan sheep GLOD4 gene was cloned by the RT-PCR method, and the structural characteristics of the GLOD4 protein were analyzed using relevant bioinformatics software, including ProtParam, TMHMM, Signal P 4.1, SOPMA, and phyre2. The expression patterns and immunolocalization of GLOD4 were examined in developmental testes derived from three-month-old (3M), one-year-old (1Y), and three-year-old (3Y) Tibetan sheep using quantitative real-time PCR (qRT-PCR), Western blot, immunohistochemistry, and immunofluorescence staining. The sequence analysis showed that the coding sequence (CDS) region of the GLOD4 gene was 729 bp in length and encoded 242 amino acids. Bioinformatics analysis found that the nucleotide and amino acid sequence of Tibetan sheep GLOD4 exhibited the highest sequence similarity with goat and chiru, and the least with zig-zag eel, of the species compared. GLOD4 expressions at both the mRNA and protein levels were significantly higher in the testes of the 1Y and 3Y groups than those in the 3M group (p < 0.01). Immunohistochemistry and immunofluorescence results indicated that the GLOD4 protein was mainly localized in the cytoplasm of Leydig cells from Tibetan sheep testes throughout the development stages. These results taken together suggest that the GLOD4 gene may be implicated in the development of the Leydig cells of Tibetan sheep during different stages of maturity.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3