Improving the Recognition Accuracy of Memristive Neural Networks via Homogenized Analog Type Conductance Quantization

Author:

Chen Qilai,Han Tingting,Tang Minghua,Zhang Zhang,Zheng Xuejun,Liu Gang

Abstract

Conductance quantization (QC) phenomena occurring in metal oxide based memristors demonstrate great potential for high-density data storage through multilevel switching, and analog synaptic weight update for effective training of the artificial neural networks. Continuous, linear and symmetrical modulation of the device conductance is a critical issue in QC behavior of memristors. In this contribution, we employ the scanning probe microscope (SPM) assisted electrode engineering strategy to control the ion migration process to construct single conductive filaments in Pt/HfOx/Pt devices. Upon deliberate tuning and evolution of the filament, 32 half integer quantized conductance states in the 16 G0 to 0.5 G0 range with enhanced distribution uniformity was achieved. Simulation results revealed that the numbers of the available QC states and fluctuation of the conductance at each state play an important role in determining the overall performance of the neural networks. The 32-state QC behavior of the hafnium oxide device shows improved recognition accuracy approaching 90% for handwritten digits, based on analog type operation of the multilayer perception (MLP) neural network.

Funder

National Natural Science Foundation of China

Hunan Provincial Innovation Foundation for Postgraduate

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3