Abstract
An advanced numerical model is presented for the simulation of wave-induced free-surface flow, utilizing an efficient hybrid parallel implementation. The model is based on the solution of the Navier–Stokes equations using large-eddy simulation of large-scale coastal free-surface flows. The three-dimensional immersed boundary method was used for the enforcement of the no-slip boundary condition on the bed surface. The water-air interface was tracked using the level-set method. The numerical model was effectively validated against laboratory measurements involving wave propagation over a flatbed with an elliptical shoal, whose presence induces combined wave refraction and diffraction phenomena. The parallel implementation of the model enabled the efficient simulation of depth-resolved, wave-induced, three-dimensional, free-surface flow; the model parallel efficiency and strong scaling are quantitatively demonstrated.
Funder
European Union (European Social Fund- ESF) and the Hellenic State Scholarships Foundation
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献