Study of Interfacial Adhesion between Nickel-Titanium Shape Memory Alloy and a Polymer Matrix by Laser Surface Pattern

Author:

Samal SnehaORCID,Tyc Ondřej,Heller LuděkORCID,Šittner Petr,Malik Monika,Poddar Pankaj,Catauro MichelinaORCID,Blanco IgnazioORCID

Abstract

The aim of this article is to investigate the interfacial adhesion of Ni-Ti shape memory alloy with a polymer matrix of Poly (methyl methacrylate) (PMMA). The surface pattern on Ni-Ti plates was channeled by a solid state laser machine. The laser machine allows for creating channels on the Ni-Ti surface for infiltration of the PMMA matrix, which could be attached as an intra-surface locking pattern to the Ni-Ti surface. The influence of the PMMA matrix on the surface of the NiTi plate was evaluated by thermomechanical analysis (TMA) and dynamic mechanical analysis (DMA). The surface characterization was carried out by an optical microscope on the PMMA/NiTi composite after mechanical testing. During mechanical testing, the polymer displays the multiple cracks in the longitudinal direction that result in slipping and fracture. TMA and DMA analyses were performed on the Ni-Ti- and PMMA-coated Ni-Ti ribbon to observe elasticity and the storage modulus for both samples. Better adhesion than 80 % was observed in the Ni-Ti surface, in the laser surface pattern, in comparison to the free plain surface. However, the polymer acts as mechanical backing that caused a reduction in the shape-memory properties of the composite material.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3