Prognostic Value of Combined Radiomic Features from Follow-Up DWI and T2-FLAIR in Acute Ischemic Stroke

Author:

Gerbasi AlessiaORCID,Konduri Praneeta,Tolhuisen ManonORCID,Cavalcante Fabiano,Rinkel Leon,Kappelhof Manon,Wolff Lennard,Coutinho Jonathan M.,Emmer Bart J.ORCID,Costalat Vincent,Arquizan Caroline,Hofmeijer Jeannette,Uyttenboogaart Maarten,van Zwam WimORCID,Roos Yvo,Quaglini Silvana,Bellazzi Riccardo,Majoie Charles,Marquering Henk

Abstract

The biological pathways involved in lesion formation after an acute ischemic stroke (AIS) are poorly understood. Despite successful reperfusion treatment, up to two thirds of patients with large vessel occlusion remain functionally dependent. Imaging characteristics extracted from DWI and T2-FLAIR follow-up MR sequences could aid in providing a better understanding of the lesion constituents. We built a fully automated pipeline based on a tree ensemble machine learning model to predict poor long-term functional outcome in patients from the MR CLEAN-NO IV trial. Several feature sets were compared, considering only imaging, only clinical, or both types of features. Nested cross-validation with grid search and a feature selection procedure based on SHapley Additive exPlanations (SHAP) was used to train and validate the models. Considering features from both imaging modalities in combination with clinical characteristics led to the best prognostic model (AUC = 0.85, 95%CI [0.81, 0.89]). Moreover, SHAP values showed that imaging features from both sequences have a relevant impact on the final classification, with texture heterogeneity being the most predictive imaging biomarker. This study suggests the prognostic value of both DWI and T2-FLAIR follow-up sequences for AIS patients. If combined with clinical characteristics, they could lead to better understanding of lesion pathophysiology and improved long-term functional outcome prediction.

Funder

Dutch Heart Foundation

Brain Foundation Netherlands

Ministry of Economic Affairs

Publisher

MDPI AG

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3