Experimental Study of Water Vapor Adsorption on Bare Soil and Gravel Surfaces in an Arid Region of Ningxia, China

Author:

Zhang Qingtao12ORCID,Wang Heng12,Wang Zhiqiang12,Xie Haoxuan12,Chen Tuo12,Guan Shuai123

Affiliation:

1. Guangdong Provincial Key Laboratory for Marine Civil Engineering, School of Civil Engineering, Zhuhai Campus, Sun Yat-sen University, Zhuhai 519082, China

2. State Key Laboratory for Tunnel Engineering, Zhuhai 519082, China

3. Guangdong Research Institute of Water Resource and Hydropower, Guangzhou 510630, China

Abstract

Water vapor adsorption on soil, a crucial non-rainfall water resource in arid regions, warrants further experimental investigation, particularly on two typical land surfaces: bare soil and gravel. This study examined the formation characteristics and influencing factors of vapor adsorption in an arid region of Northwestern China. Observations and analyses were conducted on adsorption and evaporation measurements taken by two small weighing lysimeters (SLSs); soil temperature at a depth of 5 cm; surface temperature; relative humidity; and air temperature at a height of 30 cm above the ground from 2019 to 2020. The adsorbed water in this area was more abundant at night and less abundant during the day, with a stable nightly adsorption rate of 0.013 mm/h. Adsorption was more frequent in spring and winter (from January to June and November to December), accounting for about 90% of the total annual adsorption. In 2019 and 2020, the ratio values of adsorption to evaporation were 0.16 and 0.10 for bare soil, and 0.10 and 0.12 for gravel, respectively. Adsorption was more likely to occur when the soil moisture content was less than 13%; the highest adsorption frequency was close to 20% when the RH was between 75 and 95%; low soil temperatures were more conducive to the occurrence of adsorption. The effect of temperature differences (Ta−Ts) on adsorption was stronger than that of relative humidity. The adsorption frequency generally showed a bimodal change with increasing temperature difference, but the effect of temperature differences was less effective for gravel than bare soil. When the relative humidity was high and the temperature difference was weakly positive, the maximum adsorption intensity could reach 0.18 mm/h.

Funder

National Natural Science Foundation of China

Hydrological Bureau of Guangdong Province

Guangzhou Bureau of Hydrology project “Research on the mechanism of hydro-ecological dynamics in a typical river network area”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3