Bi-DCNet: Bilateral Network with Dilated Convolutions for Left Ventricle Segmentation

Author:

Ye Zi12ORCID,Kumar Yogan Jaya2,Song Fengyan3,Li Guanxi4,Zhang Suyu1

Affiliation:

1. School of Artificial Intelligence, Wenzhou Polytechnic, Wenzhou 325035, China

2. Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka, Melaka 76100, Malaysia

3. Shanghai Gen Cong Information Technology Co., Ltd., Shanghai 201300, China

4. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510006, China

Abstract

Left ventricular segmentation is a vital and necessary procedure for assessing cardiac systolic and diastolic function, while echocardiography is an indispensable diagnostic technique that enables cardiac functionality assessment. However, manually labeling the left ventricular region on echocardiography images is time consuming and leads to observer bias. Recent research has demonstrated that deep learning has the capability to employ the segmentation process automatically. However, on the downside, it still ignores the contribution of all semantic information through the segmentation process. This study proposes a deep neural network architecture based on BiSeNet, named Bi-DCNet. This model comprises a spatial path and a context path, with the former responsible for spatial feature (low-level) acquisition and the latter responsible for contextual semantic feature (high-level) exploitation. Moreover, it incorporates feature extraction through the integration of dilated convolutions to achieve a larger receptive field to capture multi-scale information. The EchoNet-Dynamic dataset was utilized to assess the proposed model, and this is the first bilateral-structured network implemented on this large clinical video dataset for accomplishing the segmentation of the left ventricle. As demonstrated by the experimental outcomes, our method obtained 0.9228 and 0.8576 in DSC and IoU, respectively, proving the structure’s effectiveness.

Funder

Basic Research Project of Wenzhou, China

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3