Optical and Geometrical Properties of Cirrus Clouds over the Tibetan Plateau Measured by LiDAR and Radiosonde Sounding during the Summertime in 2014

Author:

Dai Guangyao,Wu Songhua,Song XiaoquanORCID,Liu Liping

Abstract

Optical and geometrical characteristics of the cirrus clouds over Naqu (4508 m a.s.l., 31.48° N, 92.06° E), in the Tibetan Plateau were determined from LiDAR and radiosonde measurements performed during the third TIbetan Plateau EXperiment of atmospheric sciences (TIPEX III) campaign from July to August 2014. For the analysis of the temperature dependence, the simultaneous observations with LiDAR and radiosonde were conducted. Cirrus clouds were generally observed ranging from 5.2 km to 12 km above ground level (AGL) (i.e., 9.7 km to 16.5 km a.s.l.), with the midcloud temperatures ranging from −79.7 to −26.0 °C. The cloud thickness generally differed from 0.12 to 2.55 km with a mean thickness of 1.22 ± 0.70 km, and 85.7% of the measurement cases had thickness smaller than 1.5 km. The retrievals of linear particle depolarization ratio, extinction coefficient, and optical depth of cirrus clouds were provided. Moreover, the multiple scattering effect inside of cirrus clouds was corrected. The linear particle depolarization ratio of the cirrus clouds varied from 0.36 to 0.52, with a mean value of 0.44 ± 0.04. The optical depth of the cirrus clouds was between 0.01 and 3 following the scheme of Fernald-Klett method. Sub-visual, thin, and opaque cirrus clouds were observed at 4.76%, 61.90% and 33.34% of the measured cases, respectively. The temperature and thickness dependencies of the optical properties were studied in detail. A maximum cirrus thickness of around 2 km was found at temperatures between −60 and −50 °C. This study shows that the mean extinction coefficient of the cirrus clouds increases with the increase of temperature. Conversely, the measurements indicate that the linear particle depolarization ratio decreases with the increasing temperature. The relationships between the existence of cirrus clouds and the temperature anomaly (temperature difference from the mean value of the temperature during July and August 2014 over Naqu) and deep convective activity are also discussed. The formation of cirrus clouds is investigated and also its apparent relationship with the South Asia High Pressure, the dynamic processes of Rossby wave, and deep convective activity over the Tibetan Plateau. The outgoing longwave radiation of cirrus clouds is calculated with the Fu-Liou model and is shown to increases monotonously with the increase of optical depth.

Funder

National Natural Science Foundation of China

China Special Fund for Research in the Public Interest

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3