Increasing Extractable Work in Small Qubit Landscapes

Author:

Akhouri Unnati12,Shandera Sarah12ORCID,Yesmurzayeva Gaukhar12

Affiliation:

1. Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA

2. Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA

Abstract

An interesting class of physical systems, including those associated with life, demonstrates the ability to hold thermalization at bay and perpetuate states of high free-energy compared to a local environment. In this work we study quantum systems with no external sources or sinks for energy, heat, work, or entropy that allow for high free-energy subsystems to form and persist. We initialize systems of qubits in mixed, uncorrelated states and evolve them subject to a conservation law. We find that four qubits make up the minimal system for which these restricted dynamics and initial conditions allow an increase in extractable work for a subsystem. On landscapes of eight co-evolving qubits, interacting in randomly selected subsystems at each step, we demonstrate that restricted connectivity and an inhomogeneous distribution of initial temperatures both lead to landscapes with longer intervals of increasing extractable work for individual qubits. We demonstrate the role of correlations that develop on the landscape in enabling a positive change in extractable work.

Funder

Department of Energy grant number

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference68 articles.

1. Nonequilibrium Equality for Free Energy Differences;Jarzynski;Phys. Rev. Lett.,1997

2. Thermodynamics of information;Parrondo;Nat. Phys.,2015

3. Kolchinsky, A., Marvian, I., Gokler, C., Liu, Z.W., Shor, P., Shtanko, O., Thompson, K., Wolpert, D., and Lloyd, S. (2017). Maximizing Free Energy Gain. arXiv.

4. Work extraction and thermodynamics for individual quantum systems;Skrzypczyk;Nat. Commun.,2014

5. Second law and Landauer principle far from equilibrium;Esposito;EPL Europhys. Lett.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3