A Method for Predicting Canopy Light Distribution in Cherry Trees Based on Fused Point Cloud Data

Author:

Yin Yihan12,Liu Gang12,Li Shanle12,Zheng Zhiyuan12,Si Yongsheng3,Wang Yang2

Affiliation:

1. Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agricultural and Rural Affairs of China, China Agricultural University, Beijing 100083, China

2. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China

3. College of Information Science and Technology, Hebei Agricultural University, Baoding 071001, China

Abstract

A proper canopy light distribution in fruit trees can improve photosynthetic efficiency, which is important for improving fruit yield and quality. Traditional methods of measuring light intensity in the canopy of fruit trees are time consuming, labor intensive and error prone. Therefore, a method for predicting canopy light distribution in cherry trees was proposed based on a three-dimensional (3D) cherry tree canopy point cloud model fused by multiple sources. First, to quickly and accurately reconstruct the 3D cherry tree point cloud model, we propose a global cherry tree alignment method based on a binocular depth camera vision system. For the point cloud data acquired by the two cameras, a RANSAC-based orb calibration method is used to externally calibrate the cameras, and the point cloud is coarsely aligned using the pose transformation matrix between the cameras. For the point cloud data collected at different stations, a coarse point cloud alignment method based on intrinsic shape signature (ISS) key points is proposed. In addition, an improved iterative closest point (ICP) algorithm based on bidirectional KD-tree is proposed to precisely align the coarse-aligned cherry tree point cloud data to achieve point cloud data fusion and obtain a complete 3D cherry tree point cloud model. Finally, to reveal the pattern between the fruit tree canopy structure and the light distribution, a GBRT-based model for predicting the cherry tree canopy light distribution is proposed based on the established 3D cherry tree point cloud model, which takes the relative projected area features, relative surface area and relative volume characteristics of the minimum bounding box of the point cloud model as inputs and the relative light intensity as output. The experiment results show that the GBRT-based model for predicting the cherry tree canopy illumination distribution has good feasibility. The coefficient of determination between the predicted value and the actual value is 0.932, and the MAPE is 0.116, and the model can provide technical support for scientific and reasonable cherry tree pruning.

Funder

Shandong Provincial Natural Science Foundation Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3