Comparing Thermal Regime Stages along a Small Yakutian Fluvial Valley with Point Scale Measurements, Thermal Modeling, and Near Surface Geophysics

Author:

Léger Emmanuel1ORCID,Saintenoy Albane1ORCID,Grenier Christophe2ORCID,Séjourné Antoine1ORCID,Pohl Eric23ORCID,Bouchard Frédéric4ORCID,Pessel Marc1ORCID,Bazhin Kirill5ORCID,Danilov Kencheeri5,Costard François1ORCID,Mugler Claude2ORCID,Fedorov Alexander5ORCID,Khristoforov Ivan5,Konstantinov Pavel5

Affiliation:

1. Laboratoire Geosciences Paris-Saclay, Université Paris-Saclay, CNRS, GEOPS, 91405 Orsay, France

2. Laboratoire des Sciences du Climat et de L’Environnement (LSCE), CEA CNRS UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

3. Department of Geosciences, University of Fribourg, 1700 Fribourg, Switzerland

4. Département de Géomatique Appliquée, Universite de Sherbrooke, Sherbrooke, QC J1K OA5, Canada

5. Melnikov Permafrost Institute, 677010 Yakutsk, Russia

Abstract

Arctic regions are highly impacted by the global temperature rising and its consequences and influences on the thermo-hydro processes and their feedbacks. Theses processes are especially not very well understood in the context of river–permafrost interactions and permafrost degradation. This paper focuses on the thermal characterization of a river–valley system in a continuous permafrost area (Syrdakh, Yakutia, Eastern Siberia) that is subject to intense thawing, with major consequences on water resources and quality. We investigated this Yakutian area through two transects crossing the river using classical tools such as in–situ temperature measurements, direct active layer thickness estimations, unscrewed aerial vehicle (UAV) imagery, heat transfer numerical experiments, Ground-Penetrating Radar (GPR), and Electrical Resistivity Tomography (ERT). Of these two transects, one was closely investigated with a long-term temperature time series from 2012 to 2018, while both of them were surveyed by geophysical and UAV data acquisition in 2017 and 2018. Thermodynamical numerical simulations were run based on the long-term temperature series and are in agreement with river thermal influence on permafrost and active layer extensions retrieved from GPR and ERT profiles. An electrical resistivity-temperature relationship highlights the predominant role of water in such a complicated system and paves the way to coupled thermo-hydro-geophysical modeling for understanding permafrost–river system evolution.

Funder

Institut Pierre-Simon Laplace

Universite Paris Saclay

French Research Agency ANR

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference77 articles.

1. Houghton, J.T., Jenkins, G., and Ephraums, J.J. (1990). Climate Change: The IPCC Scientific Assessment, Cambridge University Press.

2. The urgency of Arctic change;Overland;Polar Sci.,2019

3. Arctic amplification of climate change: A review of underlying mechanisms;Previdi;Environ. Res. Lett.,2021

4. The emergence of surface-based Arctic amplification;Serreze;Cryosphere,2009

5. Pörtner, H.O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., and Weyer, N. (2019). IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Intergovernmental Panel on Climate Change.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3