Aligning Liquid Crystal Materials through Nanoparticles: A Review of Recent Progress

Author:

Prakash JaiORCID,Kumar Akash,Chauhan Shikha

Abstract

Liquid crystals (LCs) have become indispensable materials in everyday life, with their applications ranging from high-resolution television displays to being a part of sophisticated and modern equipment for telecommunications and sensing purposes. Various important features of LC-based devices such as their response time, driving voltage, contrast ratio and brightness are controlled by the uniform alignment of the constituting molecules along the substrate surface. This alignment control can be achieved through various mechanical and non-mechanical techniques. Nanoparticles (NPs), which have become an underbelly of the latest technological developments, can also be incorporated into these tunable materials in order to achieve the desired alignment in them. The present review highlights the advantages of NPs -induced alignment technique over the other contemporary techniques available for aligning LCs. The NPs-induced alignment process is found to be cost-effective and reliable, and it does not require extreme physical conditions such as a low pressure for its operation. This alignment process enables manufacturers to effectively control the pretilt angle of the LC molecules by simply varying the concentration of the doped NPs in the host LC matrix. Furthermore, the alignment behavior in LCs is found to be a function of shape, size, concentration and solubility of the doped NPs in these materials. At the end, this review focuses on the methodology of developing new innovative devices based on this alignment process. With the fabrication of new NPs of different morphologies in recent times, the horizon of the LC nanoscience field is continuously increasing, thus paving way for new devices capitalizing on this alignment technique.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3