The Solubility of Ethyl Candesartan in Mono Solvents and Investigation of Intermolecular Interactions

Author:

Du CunbinORCID

Abstract

In this work, the experimental solubility of ethyl candesartan in the selected solvents within the temperature ranging from 278.15 to 318.15 K was studied. It can be easily found that the solubility of ethyl candesartan increases with the rising temperature in all solvents. The maximum solubility value was obtained in N,N-dimethylformamide (DMF, 7.91 × 10−2), followed by cyclohexanone (2.810 × 10−2), 1,4-dioxanone (2.69 × 10−2), acetone (7.04 × 10−3), ethyl acetate (4.20 × 10−3), n-propanol (3.69 × 10−3), isobutanol (3.38 × 10−3), methanol (3.17 × 10−3), n-butanol (3.03 × 10−3), ethanol (2.83 × 10−3), isopropanol (2.69 × 10−3), and acetonitrile (1.15 × 10−2) at the temperature of 318.15 K. Similar results of solubility sequence from large to small were also obtained in other temperatures. The X-ray diffraction analysis illustrates that the crystalline forms of all samples were consistent, and no crystalline transformation occurred during the dissolution process. In aprotic solvents, except for individual solvents, the solubility data decreases with the decreasing values of hydrogen bond basicity (β) and dipolarity/polarizability (π*). The largest average relative deviation (ARD) data in the modified Apelblat equation is 1.9% and observed in isopropanol; the maximum data in λh equation is 4.3% and found in n-butanol. The results of statistical analysis show that the modified Apelblat equation is the more suitable correlation of experimental data for ethyl candesartan in selected mono solvents at all investigated temperatures. In addition, different parameters were used to quantify the solute–solvent interactions that occurred in the dissolution process including Abraham solvation parameters (APi), Hansen solubility parameters (HPi), and Catalan parameters (CPi).

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference33 articles.

1. Candesartan, angiotensin II type 1 receptor blocker is able to relieve age-related cognitive impairment;Pharmacol. Rep.,2018

2. Applying different techniques to improve the bioavailability of candesartan cilexetil antihypertensive drug;Drug Des. Dev. Ther.,2020

3. Qin, H.L., Liu, J., and Fan, X.Q. (2022). Synthesis Process for Candesartan Cilexetil. (Chinese Patent Application No. 113,912,588).

4. Naka, T., Nishikawa, K., and Kato, T. (1996). Benzimidazole Derivatives, Their Production and Use and Use as Angiotensin II Antagonists. (European Patent Application No. 0720982).

5. A novel and practical synthesis of substituted 2-ethoxy benzimidazole: Candesartan cilexetil;Tetrahedron,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3