Impacts of Crop Type and Climate Changes on Agricultural Water Dynamics in Northeast China from 2000 to 2020

Author:

Xiao Xingyuan1ORCID,Zhang Jing1,Liu Yaqun12ORCID

Affiliation:

1. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China

2. Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Northeast China (NEC) is one of the most important national agricultural production bases, and its agricultural water dynamics are essential for food security and sustainable agricultural development. However, the dynamics of long-term annual crop-specific agricultural water and its crop type and climate impacts remain largely unknown, compromising water-saving practices and water-efficiency agricultural management in this vital area. Thus, this study used multi-source data of the crop type, climate factors, and the digital elevation model (DEM), and multiple digital agriculture technologies of remote sensing (RS), the geographic information system (GIS), the Soil Conservation Service of the United States Department of Agriculture (USDA-SCS) model, the Food and Agriculture Organization of the United Nations Penman–Monteith (FAO P-M) model, and the water supply–demand index (M) to map the annual spatiotemporal distribution of effective precipitation (Pe), crop water requirement (ETc), irrigation water requirement (IWR), and the supply–demand situation in the NEC from 2000 to 2020. The study further analyzed the impacts of the crop type and climate changes on agricultural water dynamics and revealed the reasons and policy implications for their spatiotemporal heterogeneity. The results indicated that the annual average Pe, ETc, IWR, and M increased by 1.56%/a, 0.74%/a, 0.42%/a, and 0.83%/a in the NEC, respectively. Crop-specifically, the annual average Pe increased by 1.15%/a, 2.04%/a, and 2.09%/a, ETc decreased by 0.46%/a, 0.79%/a, and 0.89%/a, IWR decreased by 1.03%/a, 1.32%/a, and 3.42%/a, and M increased by 1.48%/a, 2.67%/a, and 2.87%/a for maize, rice, and soybean, respectively. Although the ETc and IWR for all crops decreased, regional averages still increased due to the expansion of water-intensive maize and rice. The crop type and climate changes jointly influenced agricultural water dynamics. Crop type transfer contributed 39.28% and 41.25% of the total IWR increase, and the remaining 60.72% and 58.75% were caused by cropland expansion in the NEC from 2000 to 2010 and 2010 to 2020, respectively. ETc and IWR increased with increasing temperature and solar radiation, and increasing precipitation led to decreasing IWR in the NEC. The adjustment of crop planting structure and the implementation of water-saving practices need to comprehensively consider the spatiotemporally heterogeneous impacts of crop and climate changes on agricultural water dynamics. The findings of this study can aid RS-GIS-based agricultural water simulations and applications and support the scientific basis for agricultural water management and sustainable agricultural development.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Shandong Province

China Postdoctoral Science Foundation

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3