Multi-Antenna Global Navigation Satellite System/Inertial Measurement Unit Tight Integration for Measuring Displacement and Vibration in Structural Health Monitoring

Author:

Dai Wujiao1ORCID,Li Xin1,Yu Wenkun1ORCID,Qu Xuanyu2,Ding Xiaoli2ORCID

Affiliation:

1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

2. Department of Land Surveying & Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

Abstract

Large-scale engineering structures deform and vibrate under the influence of external forces. Obtaining displacement and vibration is crucial for structural health monitoring (SHM). Global navigation satellite system (GNSS) and inertial measurement unit (IMU) are complementary and widely used in SHM. In this paper, we propose an SHM scheme where IMU and multi-antenna GNSS are tightly integrated. The phase centers of multiple GNSS antennas are transformed into the IMU center, which increases the observation redundancy and strengthens the positioning model. To evaluate the performance of tight integration of IMU and multiple GNSS antennas, high-rate vibrational signals are simulated using a shaking table, and the errors of horizontal displacement of different positioning schemes are analyzed using recordings of a high-precision ranging laser as the reference. The results demonstrate that applying triple-antenna GNSS/IMU integration for measuring the displacement can achieve an accuracy of 2.6 mm, which is about 33.0% and 30.3% superior than the accuracy achieved by the conventional single-antenna GNSS-only and GNSS/IMU solutions, respectively.

Funder

National Natural Science Foundation of China

Department of Natural Resources of Hunan Province

the Innovation and Technology Fund of Hong Kong

the Fundamental Research Funds for the Central Universities of Central South University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3