A Novel Remote Sensing-Based Modeling Approach for Maize Light Extinction Coefficient Determination

Author:

Costa-Filho Edson1,Chávez José L.1ORCID,Zhang Huihui2ORCID

Affiliation:

1. Civil and Environmental Engineering Department, Colorado State University, Fort Collins, CO 80523, USA

2. Water Management and Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Collins, CO 80526, USA

Abstract

This study focused on developing a novel semi-empirical model for maize’s light extinction coefficient (kp) by integrating multiple remotely sensed vegetation features from several different remote sensing platforms. The proposed kp model’s performance was independently evaluated using Campbell’s (1986) original and simplified kp approaches. The Limited Irrigation Research Farm (LIRF) in Greeley, Colorado, and the Irrigation Innovation Consortium (IIC) in Fort Collins, Colorado, USA, served as experimental sites for developing and evaluating the novel maize kp model. Data collection involved multiple remote sensing platforms, including Landsat-8, Sentinel-2, Planet CubeSat, a Multispectral Handheld Radiometer, and an unmanned aerial system (UAS). Ground measurements of leaf area index (LAI) and fractional vegetation canopy cover (fc) were included. The study evaluated the novel kp model through a comprehensive analysis using statistical error metrics and Sobol global sensitivity indices to assess the performance and sensitivity of the models developed for predicting maize kp. Results indicated that the novel kp model showed strong statistical regression fitting results with a coefficient of determination or R2 of 0.95. Individual remote sensor analysis confirmed consistent regression calibration results among Landsat-8, Sentinel-2, Planet CubeSat, the MSR, and UAS. A comparison with Campbell’s (1986) kp models reveals a 44% improvement in accuracy. A global sensitivity analysis identified the role of the normalized difference vegetation index (NDVI) as a critical input variable to predict kp across sensors, emphasizing the model’s robustness and potential practical environmental applications. Further research should address sensor-specific variations and expand the kp model’s applicability to a diverse set of environmental and microclimate conditions.

Funder

Irrigation Innovation Consortium

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3