A Fast Radio Map Construction Method Merging Self-Adaptive Local Linear Embedding (LLE) and Graph-Based Label Propagation in WLAN Fingerprint Localization Systems

Author:

Ni YepengORCID,Chai Jianping,Wang Yan,Fang WeidongORCID

Abstract

Indoor WLAN fingerprint localization systems have been widely applied due to the simplicity of implementation on various mobile devices, including smartphones. However, collecting received signal strength indication (RSSI) samples for the fingerprint database, named a radio map, is significantly labor-intensive and time-consuming. To solve the problem, this paper proposes a semi-supervised self-adaptive local linear embedding algorithm to build the radio map. First, this method uses the self-adaptive local linear embedding (SLLE) algorithm based on manifold learning to reduce the dimension of the high-dimensional RSSI samples and to extract a neighbor weight matrix. Secondly, a graph-based label propagation (GLP) algorithm is employed to build the radio map by semi-supervised learning from a large number of unlabeled RSSI samples to a few labeled RSSI samples. Finally, we propose a k self-adaptive neighbor weight (kSNW) algorithm, used for radio map construction in this paper, to realize online localization. The results of the experiments conducted in a real indoor environment show that the proposed method reduces the demand for large quantities of labeled samples and achieves good positioning accuracy. With only 25% labeled RSSI samples, our system can obtain positioning accuracy of more than 88%, within 3 m of localization errors.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radiomap Inpainting for Restricted Areas Based on Propagation Priority and Depth Map;IEEE Transactions on Wireless Communications;2024-08

2. Radio map generation approaches for an RSSI-based indoor positioning system;Systems and Soft Computing;2023-12

3. Exemplar-Based Radio Map Reconstruction of Missing Areas Using Propagation Priority;GLOBECOM 2022 - 2022 IEEE Global Communications Conference;2022-12-04

4. Dual-weight local linear embedding algorithm based on adaptive neighborhood;Transactions of the Institute of Measurement and Control;2022-11-30

5. Coordinate Mapping Method of Crowdsourced Data for Indoor Fingerprint Localization;2022 IEEE 12th International Conference on Indoor Positioning and Indoor Navigation (IPIN);2022-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3