Stomatal Limitation Is Able to Modulate Leaf Coloration Onset of Temperate Deciduous Tree

Author:

Yu Hongying,Zhou GuangshengORCID,Lv Xiaomin,He Qijin,Zhou Mengzi

Abstract

Autumn phenology, determined mainly by temperature and photoperiod, is essential for ecosystem carbon sequestration. Usually, the variations in the maximum rate of Rubisco (Vcmax) and the maximum rate of ribulose-bisphosphate regeneration (Jmax) are taken as the mechanism regulating the seasonal pattern of photosynthetic rates and autumn phenology. In this study, we used Quercus mongolicus seedlings as an example to examine the photosynthetically physiological mechanism of leaf coloration onset (LCO) responding to different warming and photoperiod treatments based on experimental data acquired from large artificial climate simulation chambers. The results indicated that: (1) LCO and the net CO2 assimilation rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), Vcmax, and Jmax of Quercus mongolicus seedlings were significantly affected by the changes of photoperiod. (2) LCO was significantly correlated only with the Pn approach, supporting the view that leaf senescence is the result of a trade-off between nutrient resorption and reserves. (3) The major variation in stomatal conductance (Gs) is the mechanism by which photoperiod regulates the seasonal pattern of photosynthetic rates, implying that both limitations of stomatal and photosynthetical capacity (Vcmax and Jmax, non-stomatal limitation) are able to modulate LCO. Our study riches the knowledge of phenology and provides a reference for phenological modelling and ecosystem carbon estimation.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Basic Research Fund of Chinese Academy of Meteorological Sciences

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3