Soil OC and N Stocks in the Saline Soil of Tunisian Gataaya Oasis Eight Years after Application of Manure and Compost

Author:

Brahim NadhemORCID,Ibrahim Hatem,Mlih Rawan,Bouajila Abdelhakim,Karbout Nissaf,Bol RolandORCID

Abstract

Soil organic matter plays an important role in improving soil properties, crop productivity and is a key constituent and driver of the global carbon cycle. Nevertheless, relatively limited quantitative information is available on the organic carbon (OC) stocks and the actual potentials for OC and total nitrogen (N) sequestration under arid cropping systems. In this study, we evaluated the immediate and long-term (after eight years) effects of compost or manure additions, at a rate of 100 t ha−1, on the soil OC and N stocks in the Gataaya oasis in Southern Tunisia. The oasis had been abandoned and no additions had taken place in the 10 years prior to experiment. Soil samples were taken systematically every 10 cm up to a depth of 50 cm. After adding compost (CMP) and manure (MAN) in 2013, the bulk density (BD) decreased in the surface layers, especially at the 0–10 cm soil layer where it declined from 1.53 g cm−3 to 1.38 g cm−3 under compost and 1.41 g cm−3 under manure. Soil OC and N stocks, however, increased after adding compost and manure. Manure contributed more to OC stock increase than compost, with +337 and +241%, respectively. Correspondingly, the N stock increased by + 47 and +12%, respectively, due to manure and compost. After four years, compared to 2013 stocks, the decrease in OC stock was almost identical with −43 (CMP) and −41% (MAN). However, N stock seemed more stable under compost compared to manure, with −2 and −19%, respectively. After eight years, the N stock remained higher in the deepest layer 30–50 cm compared to other layers. This suggested that high gypsum application can inhibit N mineralization. The initial enhanced OC stock after the organic amendment, both for compost and for manure, was very quickly lost and after eight years had virtually returned to the initial OC state by the end of the eight years. Therefore, these oasis ecosystems require a near annual supply of exogenous organic material to maintain OC at an enhanced level. After eight years, manure amendment was found to be better than compost for increasing soil OC (3.16 against 1.86 t/ha, respectively) and for increasing N (0.35 against 0.18 t/ha, respectively). However, the cost and availability make the amendment with compost more interesting in oasis (400 Tunisian dinars/t for compost against 1016 Tunisian dinars/t for manure).

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference71 articles.

1. Clés des Sols;Gallali,2004

2. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps,2005

3. Effect of biochar on fate and transport of manure-borne estrogens in sandy soil

4. Soil macropore characteristics following conversion of native desert soils to irrigated croplands in a desert-oasis ecotone, Northwest China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3