Spatiotemporal Trends and Attribution of Drought across China from 1901–2100

Author:

Ding Yongxia,Peng Shouzhang

Abstract

Investigating long-term drought trends is of great importance in coping with the adverse effects of global warming. However, little attention has been focused on studying the detailed spatial variability and attribution of drought variation in China. In this study, we first generated a 1 km resolution monthly climate dataset for the period 1901–2100 across China using the delta spatial downscaling method to assess the variability of the Standardized Precipitation Evaporation Index (SPEI). We then developed a simple approach to quantifying the contributions of water supply (precipitation) and demand (potential evapotranspiration, PET) on SPEI variability, according to the meaning of the differentiating SPEI equation. The results indicated that the delta framework could accurately downscale and correct low-spatial-resolution monthly temperatures and precipitation from the Climatic Research Unit and general circulation models (GCMs). Of the 27 GCMs analyzed, the BNU-ESM, CESM1-CAM5, and GFDL-ESM2M were found to be the most accurate in modeling future temperatures and precipitation. We also found that, compared with the past (1901–2017), the climate in the future (2018–2100) will tend toward significant droughts, although both periods showed a high spatial heterogeneity across China. Moreover, the proportion of areas with significantly decreasing SPEI trends was far greater than the proportion of those with increasing trends in most cases, especially for northwestern and northern China. Finally, the proposed approach to quantifying precipitation and PET contributions performed well according to logical evaluations. The percentage contributions of precipitation and PET on SPEI variability varied with study periods, representative concentration pathway scenarios, trend directions, and geographic spaces. In the past, PET contributions for significant downward trends and precipitation contributions for significantly upward trends accounted for 95% and 72%, while their future contributions were 57 ± 22%–149 ± 20% and 95 ± 27%–190 ± 58%, respectively. Overall, our results provide detailed insights for planning flexible adaptation and mitigation strategies to cope with the adverse effects of climate drought across China.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3