Thermal Performance Analysis of Porous Foam-Assisted Flat-Plate Solar Collectors with Nanofluids

Author:

Lin Xinwei1,Xia Yongfang1ORCID,Cheng Zude1,Liu Xianshuang1,Fu Yingmei1,Li Lingyun1,Zhou Wenqin2

Affiliation:

1. School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230009, China

2. School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230009, China

Abstract

This study proposed a model of a porous media-assisted flat-plate solar collector (FPSC) using nanofluid flow. The heightened thermal efficiency of FPSC undergoes numerical scrutiny, incorporating various factors for analysis, including aspects like the configuration of the porous block introduced, Darcy number (Da = 10−5~10−2), types of nanoparticles, volume fraction (φ), and mixing ratio (φc). The numerical findings indicate that the dominant factor in the channel is the global Nusselt number (Nug). As the Darcy number rises, there is an improvement in the heat transfer performance within the channel. Simultaneously, for the case of Re = 234, φ = 3%, and φc = 100%, the Nug in the channel reaches a maximum value of 6.80, and the thermal efficiency can be increased to 70.5% with the insertion of rectangular porous blocks of Da = 10−2. Finally, the performance evaluation criteria (PEC) are employed for a comprehensive assessment of the thermal performance of FPSC. This analysis considers both the improved heat transfer and the pressure drop in the collector channel. The FPSC registered a maximum PEC value of 1.8 when rectangular porous blocks were inserted under conditions of Da = 10−2 and Re = 234 and the nanofluid concentrations of φ = 3% and φc = 100%. The findings can be provided to technically support the future commercial applications of FPSC. The findings may serve as a technical foundation for FPSC in upcoming porous media and support commercial applications.

Funder

National Natural Science Foundation of China

University Synergy Innovation Program of Anhui Province

Key Project of Anhui Provincial University Research and Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3