Application of PSO-BPNN-PID Controller in Nutrient Solution EC Precise Control System: Applied Research

Author:

Wang Yongtao,Liu Jian,Li Rong,Suo Xinyu,Lu Enhui

Abstract

In this paper, we present a nutrient solution control system, designing a nutrient solution electrical conductivity (EC) sensing system composed of multiple long-range radio (LoRa) slave nodes, narrow-band Internet of Things (NB-IoT) master nodes, and a host computer, building a nutrient solution EC control model and using the particle swarm optimization (PSO) algorithm to optimize the initial weights of a back-propagation neural network (BPNN). In addition, the optimized best weights are put into the BPNN to adjust the proportional–integral–derivative (PID) control parameters Kp, Ki, and Kd so that the system performance index can be optimized. Under the same initial conditions, we input EC = 2 mS/cm and use the particle swarm optimization BP neural network PID (PSO-BPNN-PID) to control the EC target value of the nutrient solution. The optimized scale factors were Kp = 81, Ki = 0.095, and Kd = 0.044; the steady state time was about 43 s, the overshoot was about 0.14%, and the EC value was stable at 1.9997 mS/cm–2.0027 mS/cm. Compared with the BP neural network PID (BPNN-PID) and the traditional PID control approach, the results show that PSO-BPNN-PID had a faster response speed and higher accuracy. Furthermore, we input 1 mS/cm, 1.5 mS/cm, 2 mS/cm, and 2.5 mS/cm, respectively, and simulated and verified the PSO-BPNN-PID system model. The results showed that the fluctuation range of EC was 0.003 mS/cm~0.119 mS/cm, the steady-state time was 40 s~60 s, and the overshoot was 0.3%~0.14%, which can meet the requirements of the rapid and accurate integration of water and fertilizer in agricultural production.

Funder

Guizhou Provincial Science and Technology Department Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. Research and Development of Water and Fertilizer Precise Proportioning Control System;Wang,2018

2. Control strategy and verification of precision water and fertilizer irrigation system;Zhang;J. Drain. Irrig. Mach. Engin,2017

3. Optimal design and experiment of fuzzy and PI segmented regulation and control of fertilizer liquid EC;Wang;Tran. Chin. Soc. Agric. Eng.,2016

4. Field Study of PID Parameter Tuning Investigation in Peristaltic Dosing Pump Control for Use in Automated Fertilizer Mixing System

5. Modeling and Simulation of Energy-Regenerative Active Suspension Based on BP Neural Network PID Control

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3