Zircon U-Pb and Fission-Track Chronology of the Kaiyang Phosphate Deposit in the Yangtze Block: Implications for the Rodinia Supercontinent Splitting and Subsequent Thermal Events

Author:

Song Yina1ORCID,Li Tianqi1,Zhou Jiayi1,Zhu Debin2,Xiao Lingling1

Affiliation:

1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Institute of Regional Geological Survey Guizhou Province, Guiyang 550300, China

Abstract

The Kaiyang phosphate mining area in Guizhou, which is located in the central–southern part of the Yangtze Block, hosts one of China’s more significant phosphate-enriched strata within the Doushantuo Formation. This formation is essential for phosphate mining and also preserves multiple magmatic events, which are closely linked to the assembly and breakup of the Rodinia supercontinent. Our comprehensive studies in petrology, geochemistry, zircon U-Pb geochronology, and fission-track dating reveal that the primary ore mineral in phosphorite is collophane, which is accompanied by dolomite, quartz, pyrite, and zircon. The majority of detrital zircons in the phosphorite, as well as the overlying dolostone and underlying sandstone, are of magmatic origin, with a record of multiple stages of magmatic ages. Among these, the older age groups of ~2500 Ma and ~2000–1800 Ma represent the ancient crystalline basement of the Yangtze Block from the Paleoproterozoic era. The three main age peaks at ~880 Ma, ~820 Ma, and ~780 Ma indicate that the magmatic event at ~880 Ma was related to the assembly of the Rodinia supercontinent during the Grenvillian period. The most prominent age peak at ~820 Ma marks a critical time point for the transition from assembly to the breakup of the Rodinia supercontinent, with the Yangtze Block’s response to the supercontinent breakup events lasting at least until ~780 Ma. The youngest group of zircon ages from the phosphorite (~594 Ma), and the underlying sandstone (~529 Ma) establishes the minimum age for the phosphorite formation, indicating that the Doushantuo phosphorite layer in the Kaiyang area was formed after 594 Ma, i.e., even later than 529 Ma. The zircon fission-track ages in the three rock types of the phosphorite-bearing rocks can be divided into three groups: 501–489 Ma, ~366 Ma, and 53–39 Ma. All of these groups are presumed to be associated with the tectonic uplift events that follow mineralization. The first two age groups correspond to the two major tectonic uplift events during the Caledonian period, which resulted in the formation of the Qianzhong Uplift. The ages of 53–39 Ma are related to the late uplift of the Himalayan orogeny, and they represent its response in the Kaiyang area of Guizhou.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3