Heterogeneity in Signaling Pathway Activity within Primary and between Primary and Metastatic Breast Cancer

Author:

Inda Márcia A.ORCID,van Swinderen Paul,van Brussel Anne,Moelans Cathy B.ORCID,Verhaegh WimORCID,van Zon Hans,den Biezen Eveline,Bikker Jan WillemORCID,van Diest Paul J.ORCID,van de Stolpe Anja

Abstract

Targeted therapy aims to block tumor-driving signaling pathways and is generally based on analysis of one primary tumor (PT) biopsy. Tumor heterogeneity within PT and between PT and metastatic breast lesions may, however, impact the effect of a chosen therapy. Whereas studies are available that investigate genetic heterogeneity, we present results on phenotypic heterogeneity by analyzing the variation in the functional activity of signal transduction pathways, using an earlier developed platform to measure such activity from mRNA measurements of pathways’ direct target genes. Statistical analysis comparing macro-scale variation in pathway activity on up to five spatially distributed PT tissue blocks (n = 35), to micro-scale variation in activity on four adjacent samples of a single PT tissue block (n = 17), showed that macro-scale variation was not larger than micro-scale variation, except possibly for the PI3K pathway. Simulations using a “checkerboard clone-size” model showed that multiple small clones could explain the higher micro-scale variation in activity found for the TGFβ and Hedgehog pathways, and that intermediate/large clones could explain the possibly higher macro-scale variation of the PI3K pathway. While within PT, pathway activities presented a highly positive correlation, correlations weakened between PT and lymph node metastases (n = 9), becoming even worse for PT and distant metastases (n = 9), including a negative correlation for the ER pathway. While analysis of multiple sub-samples of a single biopsy may be sufficient to predict PT response to targeted therapies, metastatic breast cancer treatment prediction requires analysis of metastatic biopsies. Our findings on phenotypic intra-tumor heterogeneity are compatible with emerging ideas on a Big Bang type of cancer evolution in which macro-scale heterogeneity appears not dominant.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference50 articles.

1. Hallmarks of Cancer: The Next Generation

2. On the origin and destination of cancer stem cells: A conceptual evaluation;Van de Stolpe;Am. J. Cancer Res.,2013

3. The nuclear receptor superfamily: The second decade

4. Signaling by Nuclear Receptors

5. Therapeutic targeting in the estrogen receptor hormonal pathway

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3