Identifying Key Regulatory Genes in Drug Resistance Acquisition: Modeling Pseudotime Trajectories of Breast Cancer Single-Cell Transcriptome

Author:

Iida Keita1ORCID,Okada Mariko1ORCID

Affiliation:

1. Institute for Protein Research, Osaka University, Suita 565-0871, Osaka, Japan

Abstract

Single-cell RNA-sequencing (scRNA-seq) technology has provided significant insights into cancer drug resistance at the single-cell level. However, understanding dynamic cell transitions at the molecular systems level remains limited, requiring a systems biology approach. We present an approach that combines mathematical modeling with a pseudotime analysis using time-series scRNA-seq data obtained from the breast cancer cell line MCF-7 treated with tamoxifen. Our single-cell analysis identified five distinct subpopulations, including tamoxifen-sensitive and -resistant groups. Using a single-gene mathematical model, we discovered approximately 560–680 genes out of 6000 exhibiting multistable expression states in each subpopulation, including key estrogen-receptor-positive breast cancer cell survival genes, such as RPS6KB1. A bifurcation analysis elucidated their regulatory mechanisms, and we mapped these genes into a molecular network associated with cell survival and metastasis-related pathways. Our modeling approach comprehensively identifies key regulatory genes for drug resistance acquisition, enhancing our understanding of potential drug targets in breast cancer.

Funder

JST Moonshot R&D

JST CREST

JSPS KAKENHI

Uehara Memorial Foundation

Publisher

MDPI AG

Reference85 articles.

1. Cancer statistics, 1984;Silverberg;CA Cancer J. Clin.,1984

2. Cancer statistics, 2004;Jemal;CA Cancer J. Clin.,2004

3. Cancer statistics, 2023;Siegel;CA Cancer J. Clin.,2023

4. Society, A.C. (2019). Breast Cancer Facts & Figures 2019–2020, American Cancer Society, Inc.

5. 20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years;Pan;N. Engl. J. Med.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3